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Abstract
The concept of outlier detection by statistical hypothesis testing in geodesy is briefly reviewed. The
performance of such tests can only be measured or optimized with respect to a proper alternative
hypothesis. Firstly, we discuss the important question whether gross errors should be treated as non
random quantities or as random variables. In the first case, the alternative hypothesis must be based on
the common mean shift model, while in the second case, the variance inflation model is appropriate.
Secondly, we review possible formulations of alternative hypotheses (inherent, deterministic, slippage,
mixture) and discuss their implications. As measures of optimality of an outlier detection, we propose the
premium and protection, which are briefly reviewed. Finally, we work out a practical example: the fit of a
straight line. It demonstrates the impact of the choice of an alternative hypothesis for outlier detection.
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1. Introduction
Outlier detection belongs to the daily business activities of modern geodesists. In every good textbook on
geodetic adjustment and on estimation in linear models there is a chapter on this subject (e.g. Koch 1999).
There are well established and workable methods for outlier detection and they are also implemented in
present time geodetic standard software. The most important toolbox for outlier detection is data
snooping, which is based on the pioneering work of Baarda (1968).
We list a number of reasons why there is a continued research on the subject:

(1) Today, we obtain very large sets of observations. It is nearly impossible that such a set is free of
outliers.

(2) In former times the standard preprocessing step of geodetic adjustment used to be visual data
screening. Here outliers were often detected intuitively. Today, we often use automated and real
time processing algorithms. Here the classical workflow is often not applicable.

(3) Our geodetic ancestors used to be very meticulous people. But in modern geodetic business time is
often money, such that we can often no longer afford working like them. A certain amount of
outliers in a set of raw observations must be allowed for.

(4) Today, new mathematical tools become available, e.g. tools provided by the fuzzy set theory. Their
potential for outlier detection is not yet fully exploited (Neumann et al. 2006).

(5) Our present day computers are powerful enough for numerical methods very valuable for outlier
detection, e.g. Monte Carlo methods (also applied here). We have not yet taken full advantage of
them. One advantage is that we can try to optimize outlier tests.
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The most often quoted definition of outliers is that of Hawkins (1980):
“An outlier is an observation that deviates so much from other observations as to arouse suspicions that it
was generated by a different mechanism.”
Finding a definition of gross errors (also called blunders) is harder than of outliers. The following is taken
from (Fan 2010):
“Gross errors are errors due to human mistakes, malfunctioning instruments or wrong measurement
methods. Gross errors do not follow certain rules and normally cannot be treated by statistical methods. In
principle, gross errors are not permitted and should be avoided by surveyor’s carefulness and control
routines.”
In geodesy, outliers are most often caused by gross errors and gross errors most often cause outliers. This
is why they are so often confused. (In the literature one can even find statements that they are the same.)
But on the one hand outliers may rarely be the result of fully correct measurements and on the other hand
mistakes or malfunctions may not always lead to large deviations, e.g. a small correction wrongly applied.
Since Hawkins’ and most of the other definitions of outliers restrict themselves to samples (repeated
observations) we propose a modified definition:
“An outlier is an observation that is so probably caused by a gross error that it is better not used or not
used as it is.”
In the following, we will try to discriminate correctly between gross errors and outliers. According to
Hawkins (1980) we distinguish between twomechanisms, how outliers are supposed to be generated:
(A) All standard and gross observation errors come from the same non normal, usually leptokurtic (i.e.

thick tailed) distribution. The outliers are mere realizations of observations coming from the tails of this
distribution.

(B) Some observation errors come from the normal distribution, but the outliers are “generated by a
different mechanism”, see Hawkin’s definition of outliers above, and therefore follow a different
distribution.

If we want to apply our standard geodetic adjustment procedure then those outliers need to be discarded
or down weighted because for leptokurtic distributions this procedure is not optimal. Alternatively we can
of course accommodate the outliers by application of robust estimation procedures, see (Rousseeuw and 
Leroy 2003, Yang 1991, Yang 1999). Robust estimation is outside the scope of this paper.
The paper is organized as follows: After a discussion of the important question whether gross errors should
be treated as non random quantities or as random variables we review the derivation of the elements of
the hypothesis tests for outlier detection: Null and alternative hypotheses, test statistics, probabilities of
decision errors and critical values. We review various formulations of alternative hypotheses for outlier
detection found in the statistical literature (Hawkins 1980, Barnett and Lewis 1994): Although there is a great
wealth of forms of such formulations, we have in geodesy restricted ourselves to those formulations, for
which we find the critical values in statistical look up tables. If a present time computer is available, this
restriction is no longer necessary. For the first time it will be made clear that an outlier test performing
well for one alternative hypothesis may not be suited for another. This is proofed for a practical example:
fitting a straight line. Thus, it is important to formulate the alternative hypotheses in such a way that it best
describes the stochastic behavior of the outliers.

2. The statistical modeling of gross errors
The classical separation of geodetic observation errors into

random errors (noise),
systematic errors (biases and drifts) and
gross errors

is motivated by the different stochastic properties of the three components. While random errors are
usually treated as random variables in geodesy and systematic errors show by definition a fully predictable
non random behavior, the situation with gross errors is intricate. Randomness is a mathematical
abstraction. It is used in engineering sciences to describe phenomena, whose degree of complexity does
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not allow us to describe them deterministically. Thus, whether gross errors should be treated as random
variables in geodesy depends on the degree of complexity of their generating process.
The frequentist inference introduces the concept of probability as a limit of relative frequency. We have to
consider the behavior of gross errors if we repeat the gross error generating process in the same way as
we do it with random and systematic errors. As a result we realize that it often depends on our definition
of repetition whether we get the same gross errors or not (see examples 1 and 2 below).
The Bayesian inference uses probabilities to represent the degree of belief that a quantity is close to its
true value. Here we can always attribute a probability density function (PDF) to gross errors, even to biases
(Koch 2007).
Example 1: Consider a mistake in handwritten recording of a GNSS antenna height on a tripod. The
observed value in meter is usually in the interval [1.00,1.99] and is given with two positions after decimal
point. Instead of we spuriously write down . The gross error is

.
Frequentist inference: If we repeat the reading and again make the same mistake then we get the same .
This indicates non randomness of this gross error. However, if we repeat the whole setup of the tripod and
the reading then we will probably end up with different values: Instead of we write down and
get . assumes values in the range of 0.81 … +0.81 with different discrete
probabilities given in Fig. 1. This indicates randomness of this gross error. Only in the latter case it would
be a gain in accuracy to average the observation values. Setting up the tripod is a process of so high
complexity that any deterministic treatment is out of the question (like tossing the dice).

Fig. 1 Discrete probabilities of gross errors in example 1

Example 2: Consider a terrestrial laser scanner erected at a free (more or less randomly selected) station. It
scans a wall (Fig. 2) with some target points on a specular surface and some target points hidden by an
obstacle blocking the laser path. They produce gross errors in the observed distance, the former positive,
the latter negative.
Frequentist inference: If we repeat the scanning from the same station then we get the same gross errors.
This indicates non randomness of these gross errors. However, if we repeat the station setup and the
scanning from a different station then the mirage point would move and the obstacle effect would change.
A random selection of the station would result in a random distribution of the gross errors caused by the
specular surface and the obstacle. This indicates randomness of these gross errors. Here the distribution is
not as easily specified as in example 1.
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Bayesian inference: If we do not know if the erroneous reflection of a terrestrial laser scanner comes from
an obstacle blocking the path or if the beam is diffracted on a specular surface then we have to attribute a
PDF to this gross error, which has its probability dispersed over the range of its possible values.

Fig. 2 Gross errors in terrestrial laser scanning, see example 2

If gross errors are treated as biases then they act like systematic errors by shifting the random error
distribution by their own value. If we additively combine random and gross errors as then we get a
shifted PDF for this value of the form

where denotes the PDF associated with the random errors. This assumption is known as themean shift
model, see Fig. 3.
If gross errors are treated as random variables then they act like random errors by increasing the variance
of the total errors. If we additively combine random and gross errors then we get a convoluted PDF of the
form (cf. Mood et al. 1974)

where denotes the PDF associated with the gross errors. This assumption is known as the variance
inflation model, see Fig. 3. From this line of reasoning the definition of gross errors quoted in the
introduction claiming that those errors “cannot be treated by statistical methods” seems questionable.

Fig. 3 Probability density functions of the mean shift (MS) model (top) versus the variance inflation (VI) model (bottom)
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In the following, underlined symbols denote random variables.
Example 3: The central normal distribution is a well established model for random errors: . If

is treated as random variable and no other information on its stochastic behavior is available except for
its variance then it may serve as a model also for gross errors: . This choice is justified by
the principle of maximum entropy, see (Koch 2007). In view of Fig. 1, this model is not fully correct in
example 1, but is also not too far apart. A welcome result is that also follows a normal distribution
both in case of the mean shift model, where the variance is preserved and the mean is shifted:

and in case of the variance inflation model, where the mean is preserved and the variance is inflated:

In geodesy, the mean shift model is by far more popular and widespread for three reasons:
(1) It is analytically convenient to handle.
(2) It is not necessary to introduce a PDF for the gross errors, which is often more arbitrary than for

random errors (Example 1 is really an exception).
(3) It is well known to geodesists from displacement analysis, where it is well justified because

deformations clearly exhibit a non random behavior in the frequentist’s sense that immediately
repeating the measurement does not change the deformations.

The mean shift model is often tacitly assumed to be the only possible model.

3. Null hypotheses and decision errors
The theoretical framework of outlier detection by hypothesis testing is mathematical statistics, either in
the form of the frequentist or the Bayesian inference. In mathematical statistics a hypothesis is a
proposed explanation that the probability distribution of the random vector of observations belongs to
a certain parametric family of distributions with parameter vector :

The parameter vector may assume values from a set of admissible parameter vectors. If the true
probability distribution of the vector of observations belongs to this family and if its parameter vector
is an element of the set then the hypothesis is true, otherwise it is false. If the set comprises only

one element then is said to be a simple hypothesis. Otherwise is said to be a composite hypothesis.
Parameters from the vector having a range of admissible values rather than a fixed value are called
nuisance parameters.
The aim is to decide if is true or false on the basis of a realization of . A statistical hypothesis can
never be absolutely verified. (In exceptional cases it can be falsified if we observe a vector which under
has zero probability: ). If it would have been very unlikely to have observed if is true then
it will be rejected, otherwise it will be accepted.
A standard hypothesis when trying to detect outliers in a vector of geodetic observations is

: There are no outliers in .
This is called a null hypothesis , in contrast to the alternative hypotheses to be introduced in section 5.

proposes that inliers are exclusively affected by random errors and by non random biases such that
they deviate from the true value by normal distributed errors. If we try to detect outliers in the standard
Gauss Markoff model (see Koch 1999) then a possible formulation of in compliance with (3) could read

where denotes the unknown vector of model parameters and is the design matrix relating
observations and parameters and having . denotes the known matrix of weights and

is the unknown a priori variance factor. (4) is clearly a composite hypothesis with nuisance
parameters . Other possible hypotheses may involve variance components as additional
nuisance parameters or work with fixed instead. In the latter case the formulation (4) is modified to

(3)

(5)

(4)
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which is clearly a composite hypothesis with nuisance parameters .
In practical cases there will remain small probabilities of a decision error. We distinguish between two
types of decision errors, see Table 1. Our natural goal is to minimize probabilities of decision error. But the
smaller the significance level is chosen, the more frequently we are inclined to accept and the more
frequently we will accept it if it is actually false. This increases the false negative rate . Thus we need a
tradeoff between both types of decision error.

Table 1 Decision errors in hypothesis testing
decision
error

type I: is true, but
rejected

type II: is false,
but accepted

probability false positive rate
= size of the test
= significance level

false negative rate
=1 – power of the test

in case of
outlier
detection

false alarm: outlier(s)
detected, which are
good observations

failing to raise an
alarm: outlier(s)
remain undetected

4. Critical regions and test statistics
In the space of observations we select a critical region with the property that under the
hypothesis the probability of falling in this region is independent of possible nuisance parameters of

and is very small. This probability equals the significance level :

Since determines the size of , it is also referred to as the size of the test. If is a simple hypothesis
then is a fully specified probability distribution and could naturally be the complement of a (
) confidence region of .

A hypothesis test is accomplished in five steps.
(1) Propose a null hypothesis .
(2) Chose a standard value for , say 0.1 or 0.05 or 0.01.
(3) Chose a critical region of probability (6).
(4) Observe .
(5) If then reject , otherwise accept .

(In geodesy we often exchange (3) and (4), but this is dangerous. is not allowed to be choosen depending
on . Otherwise, we get a post hoc hypothesis, i.e. a hypothesis suggested by the observations, a
widespread misuse of statistics also in geodesy.)
However, if is a composite hypothesis then we often get a different confidence region for every .
Unfortunately, this is the standard situation in geodetic outlier detection, cf. (4) and (5). This introduces an
undesirably great degree of freedom when choosing .
In geodesy and in many other disciplines a different approach is more common: Instead of choosing we
may chose a scalar random function called a test statistic such that its distribution under does not
depend on the nuisance parameters and can be easily computed. If for an observed vector we find that

is outside some confidence interval of then it would be very unlikely to have
observed if is true. Consequently, will be rejected, otherwise it will be accepted. In some cases it is
not wise to reject if, although unlikely on various occasions, assumes a very small value because
we believe that holds true nonetheless. Then the confidence interval is chosen as . A test of
this kind is called a one sided test, in contrast to the general two sided test. define the critical
region and are called critical values.
A hypothesis test is then accomplished as follows:

(1) Propose a null hypothesis .

(6)
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(2) Chose a standard value for , say 0.1 or 0.05 or 0.01.
(3) Chose a test statistic with known distribution under .

(4) Find two critical values such that . In
particular, chose for a one sided test.

(5) Observe .
(6) If or if then reject , otherwise accept .

For outlier detection in geodesy we often use the following test statistics (Baarda 1968, Pope 1976, Teunissen 
2000, Lehmann 2012b):

posterior/prior variance ratio:
individual normalized residuals:

individual studentized residuals:

extreme normalized residuals:

extreme studentized residuals:
is the vector of residuals (estimated observation errors) with elements and denote the diagonal

elements of the cofactor matrix

The superscript “ “ denotes some generalized inverse matrix. In section 7 we will comment on the
derivation of these test statistics.
Under the hypothesis in (5) we find that

has a central distribution with degrees of freedom and

has a standard normal distribution.
Example 4: Choosing size and since

we are inclined to reject in (5) if exceeds 1.96.
Under the hypothesis in (4) or (5) we find that

has a distribution with degrees of freedom. This distribution is derived by Thompson (1935). It is
introduced to geodesy by Pope (1976) and is later adopted by Koch (1999) and others.
The distributions of and are more difficult to derive. The common approximation is the following:

is equivalent to for all where . If these random events were nearly
independent then we could write

This is to say: The test with test statistic and significance level is replaced by a family of tests with
test statistics and significance level ’. Since , we find with good accuracy the
relationship

It is called Bonferroni equation (Abdi 2007).
However, are not always sufficiently independent. Lehmann (2012b) suggests using a Monte
Carlo method (see section 10) for the numerical evaluation of the relevant integrals. It is shown that the
true distribution may differ substantially from the approximation above.
In the geodetic method of data snooping according to Baarda (1968) we use a stepwise procedure:
(1) Global test: We invoke as a test statistic for general model misspecifications.

(7)

(8)
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(2) Local test: If the global test rejects then we localize the outlier by means of .
(3) Rejection rule: If an outlier is found then it is discarded or down weighted or re measured and the

procedure is restarted.
If is assumed to be unknown then and cannot be used and we are left with only the local test
based on and the rejection rule. ( being unknown is the standard assumption in most other disciplines
performing outlier tests.)

5. Optimal design of tests and the alternative hypothesis
Hypothesis tests for outlier detection should be subject to re design and optimization because today we
have sufficient computing power to apply optimization techniques which were ineligible in previous
decades. There are three starting points:
(1) determines the inhibition threshold for an alarm and should be chosen with care. Otherwise we will

run the risk of either losing too many good observations or of leaving outliers undetected. For data
snooping the problem is first addressed in (Lehmann 2010, Lehmann and Scheffler 2011). Any standard value
of (say 0.1 or 0.05 or 0.01) is doubtful.

(2) Remember that directly specifies the probability of a type I decision error, i.e. of discarding good
observations. But in geodetic outlier detection a type II decision error, i.e. an undetected outlier, is
often considered to be more harmful. It is not possible to compute the probability when only is
specified.

(3) The choice of a test statistic in outlier tests is by no means unique. In fact, it may be intuitively more
appealing than the choice of , but it is eventually no less arbitrary. See (Barnett and Lewis 1994) or (Hawkins
1980) for very long lists of rival test statistics. One could try to minimize or equivalently maximize the
power of the test , see section 7. Also other measures of optimality can be conceived, see section
8.

None of these three goals can be achieved without specification of an alternative hypothesis to be
adopted if is rejected.
Example 5: Compare the two alternatives

many rather small outliers vs. few very large outliers
In the first case we must not be afraid of frequent false alarms and a small would certainly let most
outliers pass. Thus, should be chosen large in order to really detect any outlier. In the second case we will
hardly fail to raise an alarm. Here can safely be chosen small in order to prevent frequent false alarms.
A proper formulation of the two rival hypotheses as an extension of (3) is

This is applicable if both and belong to the same parametric family of distributions , which
can be assumed here. and are two disjoint subsets of the parameter space of .

6. Types of alternative hypotheses for outlier detection
While in (4) or (5) is generally beyond dispute in geodesy, the correct formulation of the alternative
hypothesis deserves an in depth discussion.
Hawkins’ mechanisms, see section 1, give rise to different formulations of alternative hypotheses. We refer
to (Barnett and Lewis 1994) for the following synopsis:
1. Inherent alternatives: According to mechanism (A), all observation errors come from the same non
normal distribution:

Candidates for are leptokurtic distributions like generalized normal distribution (Nadarajah 2005) or
Student’s distribution. These distributions comprise the normal distribution as a special or limiting case
such that the formalism (9) is applicable.
No gross error is directly involved here. But we can consider the leptokurtic distribution in (10) to be the

(9)

(10)
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(12)

result of a variance inflation according to (2). In fact, the outlier detection and rejection in the presence of
the inherent alternative may be regarded as “thinning the tails” of distribution in (10).
2. Deterministic alternatives: A fixed and known subset of observation errors is central normally
distributed according to (4) or (5). The remaining observations are affected by gross errors and thus come
from a different family of distributions. In other words, if we have reasons to reject then we believe to
know which observations are outlying. The order of observations may be chosen “inliers first” such that we
can formulate

Here we employ Hawkins’mechanism (B). may the result of either a mean shift model (1) or
a variance inflation model (2). In view of example 3, may be another normal distribution
with parameters .
In order to avoid formulating a post hoc hypothesis, it is important that the set of suspected outliers is not
determined by inspection of the observations. E.g. it is not allowed here to simply use the observations
with the extreme residuals as suspected outliers.
The deterministic alternative is the best established type of in geodesy, mostly in conjunction with the
mean shift model (Baarda 1968, Pope 1976, Koch 1999, Teunissen 2000, Kargoll 2012).
3. Slippage alternatives: A fixed and known number of observation errors is central normally distributed
according to (4) or (5), but the remaining observation errors come from a distribution with
different parameters. Let and denote the unknown disjoint subsets of with and
elements, respectively. Then we can formulate

Here we again employ Hawkins’ mechanism (B). may as well be the result of either a mean shift
model (1) or a variance inflation model (2). The slippage alternative is identical to the deterministic
alternative except that here we do not know which observations are outlying. In order to avoid formulating
a post hoc hypothesis (see section 4), the number of outliers must not be determined by inspection of the
observations.
For example, if outliers are known to be rare and we are inclined to reject then we may alternatively
propose that there is exactly one outlier in , i.e. , but we do not know which one.
It is common in geodesy to replace this slippage hypothesis by a family of deterministic hypotheses with

for each single observation. If the slippage hypothesis is true than exactly one hypothesis of the
deterministic family is true and vice versa. The extreme residual as a test statistic for (12) can be replaced
by the individual residuals as test statistics for (11) with the significance level divided by . The
approximate equivalence is shown by (7), (8).
4. Mixture alternatives: Any observation error comes with fixed and known probability from the
normal distribution with PDF and with small probability from a different distribution with PDF

, possibly another normal distribution with parameters different from those in . Again, only the latter
observations are affected by gross errors. Their number is not fixed, but random. If both populations of
observation errors are unified then the total PDF can then be written as the PDF of a contaminated
distribution (Goldstein 1982)

In the geodetic literature this type of distribution is used for outlier detection or robust estimation in
(Yang1991, Hekimoglu and Koch 2000, Gui et al. 2011, Lehmann and Scheffler 2011). We can formulate

where is a family of contaminated distributions with PDF of type (13). The normal distribution is
included in this family through such that the formalism (9) is applicable.
Note that (14) and (10) are fully identical. In fact, the mixture alternative can be regarded as a special
inherent alternative with a contaminated distribution.

(11)

(14)

(13)
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Here we again employ Hawkins’ mechanism (B). may as well be the result of either a mean shift
model (1) or a variance inflation model (2). In the former case is called a location contaminated
distribution and in the latter case a scale contaminated distribution.
Example 3 (cont’d): Using a mixture alternative, the resulting contaminated PDFs (13) are the PDF of the
location contaminated normal distribution

exp exp

and the PDF of the scale contaminated normal distribution (Lehmann 2012a)

exp exp

7. Most powerful outlier tests
Given some value , a nearby solution to the optimal choice of a test statistic is to minimize or
equivalently to maximize the power . A test maximizing the power is called amost powerful (MP)
test (Teunissen 2000, Kargoll 2012).
Unfortunately, for all practically relevant outlier tests the power depends on the nuisance parameters in

. A common solution is to introduce an invariance principle, which reduces the set of possible test
statistics such that the power has a unique maximum. In this way we derive uniformly most powerful
invariant (UMPI) tests. The test statistics are UMPI test statistics with respect to the mean shift
model. can be derived from a slippage or deterministic alternative with (Teunissen 2000, Kargoll 
2012).

can be derived from a deterministic alternative and a single outlier in the th observation, i.e.
. One could expect the test statistics to be related somehow to the slippage alternative with
. But no UMPI property has yet been rigorously derived. This would be difficult to accomplish

because the extreme residuals are nonlinear functionals of . But at least approximately we can
transform to a family of UMPI test statistics by (7).
But even if for a practically useful a UMPI test can be constructed, the power of a test as an
optimization criterion still has the following disadvantages:

It does not indicate how to choose . E.g. if is chosen too large then we lose a lot of good
observations. Even if all outliers are discarded by the test, it does not yield a satisfactory result.
It disregards the rejection rule (down weighting, discarding, re measuring etc.). In other words, a
most powerful outlier test does not guarantee best (in whatever sense) estimated parameters.

An alternative optimization criterion proposed by Anscombe (1960) will be discussed in the next section.

8. Anscombe’s premium and protection
Consider a scalar parameter to be estimated from the observations . If would be free of outliers (i.e.

holds true) then an optimal estimator of in some sense is denoted by . But since we cannot be sure
that holds, we try to detect outliers in by hypothesis testing and in case of rejection of we discard
or down weight outliers and reprocess the remaining observations. That is to say, we come up with a rival
estimator which is intended to protect against outliers in as specified by .
However, if holds true then we expect to perform rather poorly in comparison to . This is the price
we are prepared to pay for this protection. Anscombe (1960) introduces the notion of the premium
expressing the relative loss of the outlier detection provided that holds true:

MSE MSE
MSE

MSE is the mean squared error as a measure of deviation of true and estimated parameter. If is optimal
under in a way that is minimum then the premium is obviously positive. Moreover, if
and are best linear unbiased estimates, the latter estimate perhaps with some down weighted or

(15)

(16)

(17)
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discarded observations, then and equal the variances and .
And these values are known to be independent of the values of the parameters , but are proportional to

. Regardless of being a nuisance parameter as in (4) or not as in (5), the premium can be computed
without because it cancels in (17). Additionally, depends on and the rejection rule. The
relationship between and the premium is simple: For we have and consequently the
premium is zero. Then it is monotonically increasing with .
As the opposite side of the coin Anscombe (1960) introduces the notion of protection expressing the relative
gain of the outlier detection estimator with respect to , provided that holds true:

MSE MSE
MSE

Any reasonable protection would be positive, but this is not at all guaranteed (see below). If is such that
is a meaningless result then a good protection would be close to 1. For the mean shift model

and are biased estimates. and are still independent of the values of the
parameters , but usually depend on the other nuisance parameters in . Additionally,
depends on and the rejection rule. And so does the protection. This situation resembles the dependence
of the power of the test on the nuisance parameters in , which makes it necessary to introduce UMPI
tests, see previous section.
If is a vector then it is suggested by Anscombe (1960) to extend (17),(18) to:

MSE MSE
MSE

MSE MSE
MSE

However, this might not always be reasonable because parameters may have different units like
coordinates, parameters of orientation and scale in a horizontal geodetic network. But in any case, the
sums in (19),(20) may not necessarily extend over the complete set of parameters of a geodetic model,
but only over those parameters of “primary interest”. The latter notion is adopted from Lehmann and Scheffler 
(2011), where it is pointed out that we often need auxiliary parameters for establishing a model. And the
estimated values of those parameters may not be required anymore after the processing of the
observations. Thus, if we evaluate the sums in (19),(20) then it is proposed to skip those parameters: E.g. in
a geodetic control network the sums in (19),(20) may extend only over the coordinates of control points,
see (Lehmann and Scheffler 2011). In the extreme case that only one parameter is of primary interest, we
return to (17),(18) with replaced by .
Clerici and Harris (1980) introduce the notions of premium and protection to geodetic outlier detection. Later
they apply the concept to displacement analysis, which is in principle equivalent to the detection of
outliers by the mean shift model (Clerici and Harris 1983). The protection is used in Lehmann and Scheffler (2011) as
an optimization measure for data snooping, but it is not called “protection” because at that time
Anscombe’s term was unknown to the authors.
A good hypothesis test for outlier detection would be such that the protection is high and at the same time
the premium is low. In this way one can opt for one of various rival applicants for or optimize its
perfomance by tuning parameters. However, maximizing the protection while simultaneously minimizing
the premium is impossible. In fact, the least premium equals zero by . But then we would not get
any protection. In turn, a higher protection is likely to reject more good observations, which increases the
premium. Here we propose a practical solution to this dilemma: Chose a certain premium you are willing to
pay, say 10%, and try to get the best possible protection under this restriction.
The situation with and is similar to the optimization of decision error levels , where we
chose a certain and try to find the test with the smallest , see section 7. We believe that chosing
is practically more self evident than choosing .

(18)

(19)

(20)
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Unfortunately, the terms of the form cannot be evaluated analytically because the functional
relationship between and is too complicated. A well established procedure for their numerical
calculation is the Monte Carlo (MC) method, already applied by Lehmann and Scheffler (2011) in a similar
computation. In essence the MC method replaces random variates by computer generated pseudo random
numbers, probabilities by relative frequencies and expectations by arithmetic means over large sets of
such numbers. A computation with one set of pseudo random numbers is a MC experiment.
An advantage of the MC method is that the MSEs can be computed for all relevant critical values in
parallel as follows: In each MC experiment we compute both and , regardless of the value of test
statistic . The realization contributes to all MSEs for , the realization to all MSEs for . This
yields arbitrarily dense values of the functions Prem( ) and Prot( ) with nearly no extra computational
costs. This procedure is applied for the generation of Fig. 4 6, see below.

9. Practical example: MSEs for fitting a straight line
As a practical example we chose the straight line fit with equidistant data points, a common model not
only in geodesy.

9.1 Setup and MSEs for the null hypothesis
As the null hypothesis we use in the following (5) with (unit matrix) such that .
Out of the great variety of possible alternative hypotheses we chose for illustration

(S) slippage alternatives (12) with and
(M) mixture alternatives (14) with .

By (S) we assume that there is at most one outlier in , but which one is unknown. In the following, the
unknown index of the outlying observation is denoted by . (M) means that there is in average one outlier
in , but it can happen that there is none or there are multiple outliers. Both (S) and (M) will be combined
with either

(MS) a mean shift model (1) or
(VI) a variance inflation model (2) with normally distributed gross errors, see example 3.

Thus, we arrive at four different combinations, denoted as They can be
formulated as follows:

follows PDF
follows PDF

where is the Kronecker symbol and denotes the th row of . The PDFs are from (15), (16).
The slippage alternatives have and the mixture alternatives have nuisance parameters.
The observation equations read for the slippage alternatives

and for the mixture alternatives

where is a Bernoulli random variate with probability . Under the least squares estimate of the
parameter vector (intercept, slope) can be obtained by simple least squares calculus as

It is well known that is an unbiased estimate, therefore the MSEs equal the variances to be obtained
by covariance propagation applied to (21):

MSE var

(21)

(22)

(23)
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MSE var

9.2 MSEs of the least squares estimates in the mean shift model
Due to the mean shift, and are biased estimates:

where is derived from the expectation of (15), which is by simple probability calculus obtained
as . With (21) this yields the following biases:

bias

bias
bias

(The latter two terms can also be found directly, if one considers the straight line solution for coincident
observations to be ).

has the same covariance matrix as and consequently have the same variances as
:

var

var

With the situation is different: The variance of (15) can be derived by simple calculus obtained as
. This yields the covariance matrix of as

and by covariance propagation follows

var

var

With these expressions we find

MSE var bias

MSE var bias

MSE var bias

MSE var bias

9.3 MSEs of the least squares estimates in the variance inflation model
Since (16) has expectation (Lehmann 2012a), we clearly see that

Consequently, and are unbiased estimates, but have different variances. For the
covariance matrix of is

diag

(24)

(25)

(26)

(27)
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where is added to the th diagonal element. By covariance propagation applied to (21) we obtain the
covariance matrix of as

This yields

MSE var

MSE var

By simple probability calculus we find that the variance of (16) equals (Lehmann 2012a), which
yields

MSE var

MSE var

9.4 Supplement
It is illustrative to observe when the least squares estimate (21) is least distorted by the outliers, i.e. when

MSE MSE
apart from the trivial cases or or .
For slippage alternatives this would happen for the intercept parameter if the outlier occurs at

, cf. (24),(28), while for the slope parameter this is obtained in the center of the
observations, where , cf. (25),(29). E.g. for and the intercept parameter
would be completely unaffected by an outlier while for the slope parameter this would happen at

.
Mixture alternatives do not show such a behavior, except for (27) at the theoretical value , i.e. all
observations are affected by the same mean shift , which understandably leaves the slope invariant. But
how can an estimate be best if all observations are outliers? This surprising behavior reveals a weakness of
the mean shift model in describing the geodetic reality.

9.5 Mean MSEs for the slippage alternative
Obviously, the MSEs for depend on the nuisance parameter(s) other than , i.e. either or and in
the case of the slippage alternatives also . This is undesired because in (18),(20) depends on those
unknown parameters. In order to get rid of the nuisance parameter in the slippage alternatives we
assume that every observation has the same probability to be affected by gross error. In this way we
introduce the mean MSE with respect to , symbolically

After some simple calculus we arrive at quite compact formulae:

(30)

(31)

(28)

(29)

(32)

(33)

(34)

(35)
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Still these terms are not fully computable, but depend on the unknown nuisance parameter or .
Getting rid also of this dependence would mean to introduce a probability distribution also for those
parameters as done e.g. by Möller (1972). But such a choice would always be disputable.

9.6 Estimates after application of the rejection rule
The rival estimator to be applied if is rejected works here as follows: After computing (21) we derive
the residuals and carry out a local test only. (The global test would not be good to perform here because
it is not optimal for the chosen , see section 7.) If for some critical value then is rejected. We
discard the observation with the extreme normalized residual and compute (21) with the remaining

observations. Thus, estimator either equals or the corresponding least squares estimate with
observations.

For slippage alternatives the terms of the form will in addition depend on the unknown
nuisance parameters and on either or . The dependence on can be removed by averaging as
before, getting terms of the form .
As pointed out in section 8, those terms must be evaluated numerically by the MC method. To be on the
safe side, the number of MC experiments is here chosen to be 106. This is much more than needed, as can
be demonstrated by reproducing exactly the same results with different pseudo random numbers. In this
small scale model we can afford the computational costs of such a brute force approach, but in general the
number of MC experiments should be chosen with care.

10. Results

10.1 Settings
Here we intend to demonstrate how the alternative hypothesis influences the performance of the outlier
detection in terms of premium and protection. We compute premium and protection by (17),(18) for the
intercept parameter and for the slope parameter separately. A joint computation by (19),(20) would
not make sense here because slope and intercept have different units, see discussion in section 8.
In Fig. 4, 5 and 6 we display the results of premium and protection for observations as a function of
the critical value . As stated before, the strict relationship between and is nontrivial (see Lehmann 
2012b), but can be approximated by (7),(8). In Fig. 4 slippage alternatives is used while Fig. 5 and 6 employ
mixture alternatives. For the slippage alternatives we only display the premium and protection for the
slope parameter (Fig. 4). It turns out that the corresponding values of the intercept parameter are so
much the same such that related curves would largely overlap, if plotted together in Fig. 4. Even Fig. 5 and
Fig. 6 show highly visible similarities. This indicates that an outlier detection performing well for one
parameter also performs well for another.

10.2 Premium
The premium is independent of and is therefore identical in Fig. 4 and 5 for slope parameter . In Fig. 6
it is given for intercept parameter , but the difference of all premiums is negligible. The premium is
increasing with and consequently decreasing with . If one wants to pay a premium of at most 10% then
one has to obey in this example. For there is practically no premium anymore because then
a true is very rarely rejected.

10.3 Protection
The protection depends on and also on the nuisance parameters or therein. Since the sign of is
unimportant for the protection, we restrict ourselves to positive . It is clearly seen in Fig. 4 6 that the
larger the gross errors in terms of either or the better the protection. This is a trivial result:
Protection against large gross errors is more effective than against small ones.
For outliers caused by small gross errors the local test using the extreme normalized residual as a test
statistic yields no protection at all. in (18) even becomes negative. This means that the rejection of
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the outlier makes the estimation worse. In Fig. 4 we see that for the magnitude of the gross error
must be | while for it must be to reach an operable protection provided by , i.e.
Prot>0 in (18). From Fig. 5 we conclude that for and the corresponding limits are |
and . Fortunately, it is rather unimportant to get protection against outliers caused by small gross
errors, but most of all for the protection is not satisfactory. The reason is that here with a probability
of about there are multiple gross errors of equal size in . But at most one outlier is discarded. This
is less dramatic for : Although multiple gross errors occur with the same probability, they are of
random size, which makes it likely that at least the outlier caused by the extreme gross error is discarded.
It may be surprising that the protection against larger gross errors can be worse than for smaller ones, see

in Fig. 5. This behavior can be explained by multiple gross errors masking each other. At this point
there is a notable difference between the slope parameter in Fig. 5 and the intercept parameter in
Fig. 6: Masking is worse for the slope parameter, it cannot occur in the slippage alternative used here
because of . This behavior is a pre stage of the peculiarity explained at the end of subsection 9.4.
If a good protection can be obtained in the mean shift model then it is good also for small . In other
words: Even smaller still indicate the correct outlier to be rejected. In contrast to this, in the variance
inflation model there is an optimal protection here at . This is explained as follows: Even for large
gross error variance it happens that some realizations of gross errors are small. If is small then they are
wrongly detected.

10.4 Optimization
Fig. 4 6 can be used as a starting point for the optimization of outlier detection. Most of all if applies,
it is necessary to employ a different test statistic in order get an effective protection already at | .
This is beyond the scope of this paper. If yields a good protection then we can find the optimal critical
value (here , where at the same time the premium is low). Moreover, it becomes evident that here
the choice of is not too decisive.
Note that the values derived from Fig. 4 6 cannot be assumed to hold in general. For any other observation
model the computations must be repeated. For example, the optimal critical value would tend to increase
with as suggested by (8).



Preprint of Journal of Geodesy (2013) 87 (4) 373 386. DOI: 10.1007/s00190 012 0607 y

Fig. 4 Premium (green) and protection of slippage alternatives (S) in the mean shift model (MS, blue) and in the variance
inflation model (VI, red) for the slope parameter of a straight line fit through 10 equidistant data points versus critical value of
the extreme normalized residual

Fig. 5 Same as Fig. 4, but mixture alternatives instead of slippage alternatives
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Fig. 6 Same as Fig. 5, but intercept parameter instead of slope parameter

11.Conclusions
If one is satisfied with a plausible test statistic for outlier detection such as extreme normalized or
studentized residuals and with a intuitive guess or experience based choice of the significance level or
equivalently of the critical value then there is no need to invoke any alternative hypothesis . This is
why its importance is often ignored. But if one desires to measure the performance of outlier detection or
even to optimize it in any way then it is necessary to decide on an appropriate . Besides the power,
premium and protection are very well suited, even better suited measures of performance for outlier
tests.
There is a substantial wealth of forms of possible . This gives the user the great flexibility to formulate
his on the basis of his experiences. Whatever is known about location, number and stochastic behavior
of the gross errors causing the outliers to be detected can be incorporated and, no less important,
whatever is not known can be omitted. However, only a fraction of possible has even been considered,
namely those, for which UMPI test statistics can be theoretically derived. It is not guaranteed that these
test statistics work also for other .
In former times, when critical values had to be looked up in statistical tables, it was only possible to
formulate and and to chose and in such a way that an appropriate lookup table for the
corresponding critical value is available. This substantially restricted the freedom of choice and the
possibility of optimization. But since powerful computers are available everywhere, it is no longer
forbidden to use the Monte Carlo method for computing measures of performance and for optimizing
outlier tests. One can even dispense with the derivation of the analytical formulas given in section 9,
because and can as well be computed by the Monte Carlo method in the same way
as and .
In the considered practical example it turned out that actually very similar alternative hypotheses show
different performances. Hence, an outlier test optimized for one may not be suited for another. The
user interested in a good performance of the outlier detection for his problem has to repeat the
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computations performed in section 9 on its own problem. He can try other test statistics and rejection
rules.

Acknowledgement: This work has been completed while the author spends his sabbatical at Technische
Universität Berlin with Prof. Dr. Ing. Frank Neitzel as his host. The support is gratefully acknowledged.

References
Abdi H (2007) The Bonferonni and Šidák Corrections for Multiple Comparisons. In: Neil Salkind (Ed.)

Encyclopedia of Measurement and Statistics. Sage Thousand Oaks (CA)
Anscombe FJ (1960) Rejection of outliers. Technometrics 2(2):123 147
Baarda W (1968) A testing procedure for use in geodetic networks. Netherlands Geodetic Commission,

Publication on Geodesy, 2(5), Delft, Netherlands
Barnett V, Lewis T (1994) Outliers in statistical data, John Wiley, ISBN 0 471 93094 6,Chichester
Clerici E, Harris MW (1980) A Premium Protection Method Applied to Detection and Rejection of

Erroneous Observations. Manuscripta Geodaetica, Vol. 5, pp. 282 298.
Clerici E, Harris MW (1983) A review of the premium protection method and its possible application in

detection of displacements J Geod 57 (1 4): 1 9, DOI: 10.1007/BF02520908
Fan H (2010) Theory of Errors and Least Squares Adjustment. Royal Institute of Technology (KTH), Division

of Geodesy and Geoinformatics Stockholm (Sweden), Geodesy Report No. 2015, ISBN 91 7170 200 8
Gui Q, Li X, Gong Y, Li B, Li G A (2011) Bayesian unmasking method for locating multiple gross errors based

on posterior probabilities of classification variables J Geod 85:191–203
Hawkins D (1980) Identi cation of Outliers. Chapman and Hall London New York
Hekimoglu S, Koch KR (2000) How can reliability of the test for outliers be measured? Allgemeine

Vermessungsnachrichten. VDE Verlag Berlin Offenbach, S. 247 253
Kargoll B (2012) On the Theory and Application of Model Misspecification Tests in Geodesy. Deutsche

Geodätsche Kommission Reihe C, Nr. 674, München
Koch KR (1999) Parameter Estimation and Hypothesis Testing in Linear Models. Springer Verlag Berlin

Heidelberg New York
Koch KR (2007) Introduction to Bayesian statistics. 2nd edn. Springer, Berlin
Lehmann R (2010) Normalized residuals – how large is too large? (in German). Allgemeine

Vermessungsnachrichten Vol. 2/2010 53 61, VDE Verlag Berlin Offenbach
Lehmann R, Scheffler T (2011) Monte Carlo based data snooping with application to a geodetic network. J

Geod, 5(3 4): 123–134,
Lehmann R (2012a) Geodetic error calculus by the scale contaminated normal distribution (in German).

Allgemeine Vermessungsnachrichten Vol. 5/2012, 143 149, VDE Verlag Berlin Offenbach
Lehmann R (2012b) Improved critical values for extreme normalized and studentized residuals in Gauss

Markov models. J Geod 86:1137–1146. DOI: 10.1007/s00190 012 0569 0
Möller HP (1972) Ausreißer in Stichproben aus normalverteilten Grundgesamtheiten. PhD Thesis, Cologne

University
Mood AM, Graybill FA, Boes DC (1974) Introduction to the Theory of Statistics, McGraw Hill Kogakusha,

Tokyo
Nadarajah S (2005) A generalized normal distribution, Journal of Applied Statistics 32 (7) 685–694. DOI:

10.1080/02664760500079464.
Neumann I, Kutterer H, Schön St (2006) Outlier Detection in Geodetic Applications with respect to

Observation Imprecision. Proceedings of the NSF Workshop on Reliable Engineering Computing
Modeling Errors and Uncertainty in Engineering Computations . Savannah (Georgia), USA, pp. 75 90.

Pope AJ (1976) The statistics of residuals and the detection of outliers. NOAA Technical Report NOS65
NGS1, US Department of Commerce, National Geodetic Survey Rockville, Maryland



Preprint of Journal of Geodesy (2013) 87 (4) 373 386. DOI: 10.1007/s00190 012 0607 y

Rousseeuw PJ, Leroy AM (2003) Robust Regression and Outlier Detection. John Wiley & Sons, New Jersey,
ISBN: 978 0471488552

Teunissen PJG (2000) Testing theory; an introduction. 2nd edition. Series on Mathematical Geodesy and
Positioning, Delft University of Technology, The Netherlands. ISBN 13 978 90 407 1975 2

Thompson W (1935) On the Criterion for the Rejection of Observations and the Distribution of the Ratio of
Deviation to Sample Standard Deviation. Annals of Mathematical Statistics, Vol. 6, pp. 214—219

Yang Y (1991) Robust Bayesian estimation. Bull Geod 65(3):145–150
Yang Y (1999) Robust estimation of geodetic datum transformation. J Geod 73:8 274

Author
Prof. Dr. Ing. Rüdiger Lehmann
University of Applied Sciences Dresden
Faculty of Spatial Information
Friedrich List Platz 1
D 01069 Dresden
Tel +49 351 462 3146
Fax +49 351 462 2191
mailto:r.lehmann@htw dresden.de


