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Abstract

Geodetic adjustment models are often set up in a way that the model parameters need to fulfil
certain constraints. The normalized Lagrange multipliers have been used as a measure of the
strength of constraint in such a way that if one of them exceeds in magnitude a certain threshold
then the corresponding constraint is likely to be incompatible with the observations and the rest of
the constraints. We show that these and similar measures can be deduced as test statistics of a
likelihood ratio test of the statistical hypothesis that some constraints are incompatible in the same
sense. This has been done before only for special constraints (Teunissen 1985) . We start from the
simplest case, that the full set of constraints is to be tested, and arrive at the advanced case, that
each constraint is to be tested individually. Every test is worked out both for a known as well as for
an unknown prior variance factor. The corresponding distributions under null and alternative
hypothesis are derived. The theory is illustrated by the example of a double levelled line.

Keywords

Geodetic adjustment; Gauss Markov model with constraints; Lagrange multipliers; likelihood ratio
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1 Introduction
Geodetic adjustment models are often set up in a way that the model parameters need to fulfil
certain constraints. Such constraints are expressed in a way that the parameters satisfy a set of
equations or inequations.
In the following we will restrict ourselves to linear equality constraints
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(1.1)

where is a matrix and is a vector. Inequality constraints are treated e.g. in Schaffrin (1981) 
, Roese-Koerner et al. (2012) .
The number of equations must be smaller than the number of model parameters . Sometimes it
is possible to solve the equations for model parameters and to substitute these parameters in the
adjustment model by the remaining parameters. This approach transforms the constrained
adjustment problem into an unconstrained one. Even though it is possible to do so, this approach has
disadvantages:

1. The observation equations become more complex . This partly complicates the solution.
2. If a constraint is erroneous in the way that the true parameters do not fulfil it then this

model misspecification does not clearly protrude anymore.

Example: If a levelled loop is not truly closed then this effect may be seen in the large magnitude of
the estimated loop misclosure. Assume that the model parameters are the height differences of
adjacent points. If one parameter is substituted by the negative sum of the rest of the parameters in
this loop then this model disturbance only shows up in large magnitudes of all residuals (estimated
observation errors) .
Constrained adjustment problems are most often solved using the concept of Lagrange multipliers
(LMs) . The genesis of the LMs is analyzed by Bussotti (2003) . Particularly, the author shows that this
mathematical approach was introduced by Lagrange in the framework of statics in order to
determine the general equations of equilibrium for problems with constraints.
Later the concept of LMs became a very widespread tool for the solution of constrained optimization
problems, e.g. of constrained least squares problems in geodetic adjustment. The mathematical
formulation of such problems is oftentimes called Gauss Helmert Model. Helmert treated the case of
“constrained observations” in his classical textbook (Helmert 1872, p.202-215) . He refered to the LMs as
“correlates” (german: “Korrelaten”, see also Jäger et al. 2005, p.161-173) . Another synonym for “LMs” is
“Lagrange correlates” (e.g. Krakiwsky and Biacs 1990) .
Today the use of LMs is built on a broader foundation: Schaffrin and Felus (2005) introduce linear
constraints into the novel framework of total least squares (TLS) adjustment. Koch (2012) uses LMs for
a robust estimation method based on the expectation maximization (EM) algorithm. The method is
demonstrated by the analysis of measurements with gross errors of a laser scanner.
It is well known that if a constraint forces the solution of an optimization problem to be very
different from the unconstrained solution then this causes the corresponding LM to become large in
magnitude. That is why Wziontek et al. (2001) introduce the LMs as measures of the strength of a
constraint in geodetic adjustment problems. They argue that if a LM divided by its standard deviation
is large in magnitude then the corresponding constraint is likely to be incompatible with the
observations. A numerical example is given in form of a 2D triangulation network. An exact
formulation in terms of statistical hypothesis tests, as it will be given below, is missing.
The concept of using LMs as a measure of the strength of constraint is reconsidered by Wienholz (2002) 
for the calculation of GPS phase ambiguities. The application is restricted to a numerical example in
form of a 3D trilateration network.
Independently Clements and Costa (1998) as well as Lourenço et al. (2004) derive the concept of normalized
LMs (LMs divided by their standard deviation ) as a measure of the strength of a constraint for
topology error identification in power system state estimation. A threshold of 3 is used. A normalized
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LM above 3 indicates an error in the model. Also here no direct relationship to statistical hypothesis
tests is established.
We will show in this paper that these heuristic measures have a profound statistical justification.
Teunissen (1985) approached this point from the opposite direction: Setting up the hypothesis test
for quality control in geodetic networks, where (1.1) assumes a special form, he showed that the
resulting test statistic is in fact a LM divided by its standard deviation. In the language introduced in
our paper this test statistic is an individual normalized LM. Besides this we will derive extreme
normalized as well as individual and extreme studentized LMs.
The paper is organized as follows: After introducing hypothesis tests for geodetic adjustment we
recall the adjustment solutions in the classical Gauss Markov Modell (GMM) both without and with
constraints. The mainstay of the paper is presented in section 5. Here we develop the hypothesis
tests for compatibility of certain constraints of a GMMwith the observations and the rest of the
constraints. We start from the simplest case, that the full set of constraints is to be tested, and arrive
at the advanced case, that each constraint is to be tested individually. The theory is illustrated by the
example of a double levelled line.

2 Hypothesis tests in geodetic adjustment
The problem of compatibility of constraints for parameters in geodetic adjustment should be
rigorously treated from the viewpoint of statistical testing theory. In this paper we will design a
statistical test for the null hypothesis that all constraints are compatible vs. the alternative
hypothesis that some constraints are erroneous and therefore incompatible with the observations
and the rest of the constraints.
In statistical testing theory there are three important types of hypothesis tests relevant for our
problem:

1. the likelihood ratio (LR) tests, which is the standard type applied in geodesy (Koch 1999, 
Teunissen 2000 p.53-62, Kargoll 2012 p.29) ,

2. the Rao score (RS) tests, also known as Lagrange multiplier (LM) test, introduced by Silvey 
(1959) , for use in geodetic adjustment see also (Kargoll 2012, p.33-34) , and

3. the Wald tests (Wald 1943) .

Since we have to deal with LMs in the following, it seems as if the LM tests are better suited than the
LR or Wald tests. But this is not true. Engle (1983) shows that all three types of hypothesis tests are in
some senses asymptotically equivalent. Practically we desire to apply the test, which maximizes the
test power. According to the Neyman–Pearson lemma this holds for an LR test as long as we deal
with simple hypotheses (Teunissen 2000, Kargoll 2012) . Then the LR test is called uniformly most
powerful (UMP) . Unfortunately, all hypotheses under consideration in this paper are not simple but
composite, such that a strict UMP property is not guaranteed. Thus, we cannot be sure to obtain a
test with much power. Nonetheless, the LR tests are still a good choice, also because they are
familiar to most geodesists. In the following we will restrict ourselves to the LR tests.
Consider a linear null hypothesis, represented by the system of linear equations

(2.1)
for the vector of model parameters , opposed by the alternative hypothesis
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(2.2)

Let denote the likelihood function of , given the vector of observations . The LR test
defines the test statistic as (e.g.Teunissen 2000 p.53) 

(2.3)

In the numerator the hypothesis (2.1) is introduced as a constraint. The LR test requires the solution
of two optimization problems: a constrained and an unconstrained maximum likelihood estimate
(MLE) for . The first is solved using the method of LMs: The least squares minimum functional
(weighted sum of squared residuals, see (3.3) below) is extended by the additional LM term to the

LM minimum functional

(2.4)

where is the vector of LMs. If the ratio of the suprema falls below a critical value then
must be rejected, otherwise we fail to reject .
If we have normally distributed observation errors then the MLE coincides with the well known least
squares estimate of the parameters with and without constraints: (2.3) assumes the form

(2.5)

Alternatively we may use the fully equivalent test statistic

(2.6)

If with a properly chosen critical value then must be rejected, otherwise we fail to
reject .
Now assume that additionally the variance factor of the observations is unknown. Let
denote the joint likelihood function of and , given the vector of observations . The LR test
defines the test statistic now as

(2.7)

If we have normally distributed observation errors then the MLE for without and with constraints
read (e.g. Koch 1999) 

(2.8)

(2.9)

respectively. These formulae are obtained from the necessary condition , both
in the constrained and in the unconstrained case. Note that the LM term is free of and disappears
when taking the derivative.
Thus, (2.7) assumes the form

(2.10)

Alternatively we may use the fully equivalent test statistic
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(2.11)

The factor is chosen such that under standard assumptions follows a distribution,
see (5.9) , (5.10) below.
If with a properly chosen critical value then must be rejected, otherwise we fail to
reject .

3 GMMwithout constraints
We start with the linear or properly linearized GMM for the vector of parameters and the
vector of observations . The observation equations (functional model)

(3.1)

contain random observation errors (stochastical model)

(3.2)

We require the matrix (design matrix) and the matrix (weight matrix) to be of full
rank. The least squares minimum functional without constraints reads

(3.3)
The classical least squares estimate without constraints is obtained as (Koch 1999, Teunissen 2001 p.44, 
Jäger et al. 2005 p.160) 

(3.4)

(3.5)

(3.6)
It is well known that the least squares estimate is unbiased:

(3.7)
Example: A levelling line A C (see Fig. 1) is levelled in both directions. The observations are the
observed height differences between adjacent points in forward and backward direction. The
parameters are the corresponding true height differences. The observation equations read

(3.8)

Typically the weights are here identical for each pair of observations:
(3.9)

According to (3.3) (3.6) we get the estimates

(3.10)

(3.11)

(3.12)

(3.13)
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Fig. 1. Double levelled line with

4 GMMwith constraints for parameters
We impose the constraints (1.1) on the parameters. Additionally we require the matrix to
be of full rank.
Even though the true parameters fulfil the constraints, i.e. the vector of true misclosures

(4.1)
equals the zero vector, we cannot expect the estimated parameters in (3.4) to do so. This is due to
the effect of inevitable observation errors in (3.1) . There would remain a vector of estimated
misclosures

(4.2)
with the cofactor matrix obtained by variance covariance propagation as

(4.3)
We must explicitly impose the constraints (1.1) on the estimated parameters. This is done by the
method of LMs (2.4) : The least squares minimum functional without constraints in (3.3) is
extended to the Lagrange minimum functional

(4.4)
The solution of the constrained optimization problem, here distinguished from the unconstrained
solution by primes, is (Koch 1999, Teunissen 2001 p.86, Jäger et al. 2005 p.166) 

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
The new estimated parameters fulfil the constraints. This is shown as follows:

(4.10)

Example (cont’d) : Now we introduce a known height difference between end point and
starting point of the levelling line in Fig. 1. This imposes a constraint for the parameters:

(4.11)

From (4.2) , (4.3) , (4.5) , (4.6) we derive

(4.12)

(4.13)

A
C



Preprint of Journal of Geodesy (2013) 87 (6) 555 566. DOI: 10.1007/s00190 013 0627 2

(4.14)

(4.15)

Taking account of the constraint, the estimated parameters are obtained from (4.7) as

(4.16)

As the result we obtain the well known rule that the misclosure must be divided inversely
proportional to the weights and subtracted from the mean observations.
It is obvious that is equivalent to and to . In other words, the estimated vector
of LM equals the zero vector if and only if the estimated parameters in (3.4) already fulfil the
constraints.
Using (4.7) the minimum of the Lagrange functional (2.4) can be rewritten as

(4.17)

Utilizing the well known equivalence and (4.5) we get the increase of the minimum value
of the least squares minimum functional enforced by the constraints

(4.18)

5 Compatibility of constraints
If the minimum value of the Lagrange functional is increased considerably with respect to then
this indicates that the constraints (1.1) are not almost automatically fulfiled by the information
provided by the observations, but a great force is needed to constrain the adjustment. This may
show that the model is not correct. Possibly not even the true parameters fulfil the constraints,
such that true misclosures (4.1) are left.
Example (cont’d) : (4.14) shows that if the estimated misclosure is large in magnitude then so is
the LM ’. This may indicate that the model is not correct. A possible explanation is that the
constraint and the observations are incompatible. Possibly the known height difference is not
correct.
The approach presented here is to test statistically if the constraints are compatible with the
information provided by the observations. The test applied here will be equivalent to a LR test,
particularly of the form (2.6) or (2.11) . In the following we assume normally distributed observation
errors

(5.1)
as a special case of (3.2) .

5.1 Testing the compatibility of the full set of constraints
Using (3.7) , (4.7) we rewrite



Preprint of Journal of Geodesy (2013) 87 (6) 555 566. DOI: 10.1007/s00190 013 0627 2

(5.2)

we observe that is equivalent to . In the constrained GMM we propose
the hypotheses

null hypothesis vs.
alternative hypothesis .

which are linear hypotheses for the parameters of the unconstrained GMM.
To begin with, assume that the prior variance factor is known, e.g. from long standing experiences
with observations of this kind. The LR test statistic (2.6) can here be written with (4.18) as

(5.3)

Thus, can be written as a quadratic form of a vector and it’s corresponding covariance matrix,
both with and . The distribution of such a quadratic form is known to be a central or non central

distribution with degrees of freedom (Koch 1999, Teunissen 2000 p.125) , denoted as and
respectively. The distribution is central if and only if , i.e. if

holds true:
(5.4)

(5.5)
with the non centrality parameter

(5.6)

The true misclosure is naturally unknown. Hence, in practical application the distribution of
cannot be computed.
Now assume that the prior variance factor is unknown. In this case we get with (4.18) the LR test
statistic (2.11)

(5.7)

Note that is the estimate of in the unconstrained GMM.
The quadratic form is known to follow a central distribution with degrees of
freedom (Koch 1999, Teunissen 2000 p.91) :

(5.8)

Moreover, it is statistically independent from the quadratic forms in the numerator of (5.7) , (Koch 
1999) . This ensures that the test statistic in (5.7) is distributed as (Koch 1999) 

(5.9)

(5.10)
i.e. follows a central or non central distribution with and degrees of freedom and with
the same non centrality parameter as in (5.6) . Again, it cannot practically be computed, because
the true misclosure is naturally unknown, this time together with the prior variance factor .
Being equivalent to the LR tests (2.5) , (2.10) both tests are one sided tests. If or exceed a
critical value or , respectively, then is to be rejected. The latter values are to be derived as
the (1 quantile of the distribution of or , where denotes the desired probability of
a type I decision error ( rejected, if it is true) .
A rejected means that there is a conflict between the observations and the constraints. Here we
are inclined to assume that the true parameters do not fulfil the constraints, such that in (4.1)
.
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5.2 Testing the compatibility of a single constraint
In this subsection we investigate the special case . Here and reduce
to scalars. We get from (5.3) and (5.7)

(5.11)

(5.12)

and in the denominators we find the prior and posterior variances of or . This motivates
introducing the new test statistics

(5.13)

(5.14)

In analogy to the normalized and studentized residuals in outlier detection they can be termed
normalized and studentized LMs. In particular, since the posterior variances are estimates in the
unconstrained GMM, we call externally studentized, in analogy to the externally studentized
residuals in outlier detection, which are computed from the posterior variances in the GMM without
the suspected outlier. (The similarity to outlier detection is more than superficial. Outliers are
misspecifications of the observation equations (3.1) , while true misclosures are misspecifications of
the constraints (1.1) .)
Since the new test statistics follow the distributions

(5.15)

(5.16)

(5.17)

(5.18)
where and denote the central and non central Student’s distribution, respectively, with
degrees of freedom. The non centrality parameter reads

(5.19)

Again, it cannot be computed unless the prior variance factor and the true misclosure are
known. At least the latter is practically out of the question.
A test using or is fully equivalent to the test using or , respectively. However,
both tests are two sided tests now because and can be positive as well as negative. If or

exceed critical values or , respectively, then is to be rejected. The latter values are
derived as the quantile of the distribution of in (5.15) and in (5.17) .
Example: Let . If is known and then is to be
rejected. Here denotes the cumulative distribution function (cdf) of the standard normal
distribution . The critical value for also depends on . For example, if
then it is found from the inverse distribution as .
The advantages of and are:

The critical values and can sometimes be computed more easily than and .
The test statistics in the form of normalized and studentized quantities can be directly
interpreted as a measure of the strength of the related constraint.

Example (cont’d) : Using (4.13) , (4.15) , the normalized and externally studentized LMs and
misclosures read
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(5.20)

(5.21)

Using (2.8) , (3.13) we get

(5.22)

The test statistics follow the distributions in (5.15) (5.18) with and

(5.23)

5.3 Testing the compatibility of a subset of constraints
The next step is to split the system of constraints into two parts:

(5.24)

(5.25)

Suppose that the first constraints are correct. Now we test whether the second constraints
are in conflict with the observations and the first part of the constraints. The LR ratio in (2.6) or (2.11)
becomes a ratio of two constrained likelihood maxima: in the numerator we find the fully
constrained maxima as before and in the denominator we find the semi constrained maxima subject
to the constraints only.
Introducing the notation

(5.26)

the least squares solution in the semi constrained GMM can be derived from (4.5) (4.9) , (4.18) with
replaced by . It is here distinguished from the previous solutions by double primes:

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

The misclosure in the first set of constraints is removed by this solution, while in the second set the
misclosure is estimated to

(5.33)
with cofactor matrix

(5.34)

The hypotheses to be tested can now be written in various equivalent forms, e.g. as
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null hypothesis vs.
alternative hypothesis

and therefrom we can derive the LR test statistics as before:

(5.35)

(5.36)

with

(5.37)

and enjoy the same nice properties as and . This can be understood by
considering the following procedure: could be solved for suitable parameters, and
these parameters could be eliminated also from the observation equations (3.1) . Then the semi
constrained GMM is transformed into an unconstrained GMM for the remaining parameters
having the same solution. This shows that (5.8) can be modified to

(5.38)

Now the parameters are also eliminated from . Then the fully constrained GMM is
transformed into a constrained GMM for the remaining parameters and constraints with
the same solution. Consequently, we get the increase of the minimum value of the least squares
minimum functional enforced by the constraints in analogy to (4.18) as

(5.39)

This shows that (5.4) , (5.5) can be modified to

(5.40)

(5.41)
with the non centrality parameter

(5.42)

By the same line of reasoning as for we obtain from (5.9) , (5.10) for the distributions
(5.43)

(5.44)

5.4 Testing the compatibility of an individual constraint
In the following we want to specify the test elaborated in the preceding subsection for the null
hypothesis that in a set of constraints for parameters an individual constraint is compatible with
the rest of the constraints and the observations vs. the alternative hypothesis that there is a true
misclosure in that particular constraint. This is a special case of the hypotheses tested in the
preceding subsection for . Assume that the constraint under consideration is
moved to the end of the set. Some submatrices of and become vectors and scalars. This
will be made more clear by changing the notation from to :

(5.45)
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By block matrix inversion (Koch 1999, Jäger et al. p.35) we get from (4.6)

(5.46)

with

(5.47)

being the last scalar element of matrix . Inserting this into (5.37) and rearranging yields

(5.48)

Now the test statistics (5.35) , (5.36) simplify to

(5.49)

(5.50)

In analogy to (5.13) , (5.14) this motivates introducing the new test statistics

(5.51)

(5.52)

They can be termed individual normalized and externally studentized LMs. Note that the
studentization must be made using the variance estimate of the semi constrained GMM. This
is indicated by the adjective “external”. Since a test using or is
fully equivalent to a test using or . The advantages of or are the same as of
or , see subsection 5.2.
The distribution of and can be derived from (5.40) , (5.41) , (5.43) , (5.44) with as
follows:

(5.53)

(5.54)

(5.55)

(5.56)
with the non centrality parameter

(5.57)

An alternate version of this formula can be found from and (4.5) as

(5.58)

Example (cont’d) : Assume that on the double levelled line from Fig. 1 there is another known point
B, see Fig. 2, such that we get besides (4.11) a second constraint
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(5.59)

The latter constraint is possibly not correct due to a suspected mistake in . The constraint
matrix and vector read

(5.60)

where the second row of has ones and zeros. We get new estimates of the misclosures

(5.61)

(5.62)

In order to simplify this example as much as possible, assume that we have overall equal weights
. From (4.6) , (3.11) , (5.60) we get

(5.63)

(5.64)

(5.65)

(5.66)

The solution of the semi constrained GMM only taking account of the constraint (4.11) reads

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)

The test statistics follow the distributions (5.53) (5.56) with . From (5.58) and (5.63)
we get the non centrality parameter
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(5.72)

Fig. 2. Double levelled line with

5.5 Testing the compatibility of multiple individual constraints
Assume we have in a GMM a set of constraints (1.1) . If we do not know if any individual constraint
is in conflict with the observations and the rest of the constraints then we can naturally propose the
hypotheses:

: No individual constraint is in conflict with the observations and the rest of the constraints.
vs.
: At least one individual constraint is in conflict with the observations and the rest of the

constraints.

This can be opposed to a set of hypotheses with

: The th constraint is in conflict with the observations and the rest of the constraints.

If any of the is true, so is . If all are false, so is . If is tested against then a

proper test statistic is either or where indicates that the th constraint is to be tested
rather than the last one, as done in the preceding subsection. If any of the test statistics exceeds its

critical value then we are inclined to reject in this particular test vs. and consequently
reject also in the test vs. :

(5.73)

or

(5.74)

Here denote the related critical values for a probability of a type I decision error .
They can be computed from the inverse cdf of and at . Now we
introduce extreme normalized and externally studentized LMs as follows:

(5.75)

(5.76)

such that (5.73) and (5.74) are equivalent to

(5.77)

or

(5.78)

respectively. Thus, extreme normalized and externally studentized LMs immediately act as test
statistics for the test of vs. . However, the related probability of a type I decision error is not ,
as will be demonstrated now:

A B
C
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Unfortunately, the distributions of and are more complicated than those of and .
This is due to the complicated nonlinear structure of (5.75) , (5.76) . But we can try to apply the
common approximations well known from normalized residuals in outlier detection (Baarda 1968, Koch 
1999, Lehmann 2012) : If the random events in (5.73) , (5.74) were nearly independent then we could
approximately write

(5.79)

(5.80)

All those probabilities are probabilities of a type I decision error and of the related test

statistics and , respectively. This yields in both cases

(5.81)

This is to say: The test with test statistic or and probability of type I decision error is

approximated by a family of tests with test statistic or and probability of
type I decision error , respectively. Since practically we chose , we find from (5.81) with good
accuracy the relationship

(5.82)

It is called Bonferroni equation (cf. Abdi 2007) . If these approximations can be applied then we may
replace in (5.77) , (5.78) by .
However, even though is true, it may happen that a large observation error occurs, and a
considerable force is required to fulfil the constraints. Typically this affects multiple constraints at a
time. Thus, if one LM is large in magnitude, also other LMs tend to be large in magnitude and vice
versa. This effect has been disregarded by the approximation in (5.79) , (5.80) . In this case and if one
LM is small then we still suppose that the “neighbouring” LM can be large in magnitude. In this way
using the approximations in (5.79) , (5.80) we overestimate the probability of large extreme
normalized LMs. This effect has been demonstrated by Lehmann (2012) for extreme normalized and
studentized residuals, and it arises here as well.
In the case that the approximations in (5.79) , (5.80) are too coarse or that it is not known or too
cumbersome to find out if they can really be used, we recommend the Monte Carlo method, which
directly computes the critical values of the test statistic for a desired . The
method was demonstrated and applied to extreme normalized and externally studentized residuals
for outlier detection by Lehmann (2012) . (5.77) , (5.78) are then replaced by

(5.83)

and

(5.84)

respectively.

Example (cont’d) : If also the constraint (4.11) is to be tested then we derive the related test statistic

in the same way as for the constraint (5.59) by
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(5.85)

(5.86)

(5.87)

(It is instructive to try to understand why this test statistic assumes such a form. belongs to
the alternative hypothesis that is correct, but is not. Thus, is
incorrect, and this is best tested using the related estimated misclosure in (5.87) .)
From (5.58) and (5.63) we get the non centrality parameter

(5.88)

in (5.66) , in (5.71) and in (5.72) are now renamed as , and ,
respectively. From (5.79) we conclude that the joint vector of individual test statistics

(5.89)

is bivariate normally distributed

(5.90)

with covariance matrix derived by covariance propagation

(5.91)

and thus and are correlated with correlation coefficient . This shows that (5.79)
can be applied only when is small. If then the second constraint is better replaced by the
equivalent constraint “along the shorter way”. In the worst case and for example
we get . In such a small scale problem we can perform an
exact calculation without the Monte Carlo method as follows:

(5.92)

where denotes the cdf of (5.90) . This has been evaluated by the MATLAB function mvncdf.
The result is . This shows that 2.24 is not the correct critical value
for . A more detailed computation would reveal that the desired critical value is .
The deviation of the approximate value is oftentimes tolerable.
Such a computation would be infeasible when is large due to excessive numerical expenditure, but
the Monte Carlo method would still be an option.
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6 Conclusions
We have demonstrated how measures of the strength of a constraint can be derived as test statistics
of likelihood ratio tests. This gives those measures a profound justification. We have derived test
statistics for compatibility

of the full set of constraints (5.3) and (5.7)
of a subset of constraints (5.35) and (5.36)
of a specific individual constraint in the form of

o individual normalized LMs (5.51) and
o individual externally studentized LMs (5.52)

of multiple individual constraints in the form of
o extreme normalized LMs (5.75) and
o extreme externally studentized LMs (5.76) .

All those test statistics have known distributions under the null hypothesis and also under the
alternative hypothesis, except for the unknown non centrality parameter. For the extreme LMs we
derived the distributions only with the approximations (5.79) , (5.80) . Using other plausible test
statistics like those employing the estimated misclosures instead of the LMs gives less powerful test
results.
A number of extensions of the work presented here are required:

We should try to use internally instead of externally studentized LMs. There is a strict
relationship between both quantities. Internally studentized quantities are practically more
appealing, but have more complicated distributions (so called distributions) .
We should extend the derivation to matrices and not of full rank, as the appear in free
network adjustments.
We should use the Monte Carlo method for the computation of critical values of extreme
normalized and studentized LMs and of power functions.
We should try to derive the results also in such a way that the constraints are given as
observation equations by letting the weights of these observations go to infinity.
Finally, we mention that here we have exclusively considered non compatibilities of
constraints caused by non random biases . It is worth considering the case that they are
caused by random effects. For example, a levelling line has a misclosure because a
levelling rod was by chance not erected on firm ground. Then is a random variable and the
distributions of all test statistics under the alternative hypothesis change.

Potential applications of normalized and studentized LMs are all adjustment problems with equality
constraints for parameters: geodetic network adjustment, coordinate transformations,
photogrammetric bundle adjustment etc.
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